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The development of a genomics-derived discipline within geology is timely, as a result of major advances in
acquiring and processing geologically relevant genetic data. This paper articulates the emerging field of
“geogenomics”, which involves the use of large-scale genetic data to constrain geological hypotheses. The
paper introduces geogenomics and discusses how hypotheses can be addressed through collaboration between
geologists and evolutionary biologists. As an example, geogenomic methods are applied to evaluate competing
hypotheses regarding the timing of the Andean uplift, the closure of the Isthmus of Panama, the onset of trans-
Amazon drainage, and Quaternary climate variation in the Neotropics.
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1. Introduction

In the past decade, DNA sequencing of plant and animal taxa (Box 1)
has generated vast amounts of genetic data. In light of advancing
Box 1
Essential biological vocabulary.

Calibration: In phylogenetics, a calibration is a fossil with a known
or approximately known age that is used to aid in the conversion
of molecular units of change into units of chronological time.
Clade: A taxonomic group consisting of an ancestor and all its
descendants, representing a single “branch” on the “tree of life”.
Crown group: A group of taxa that includes all living members, as
well as all of their ancestors back to the last common ancestor of
all living species in the group. The crown group also includes all
extinct taxa that also trace their ancestry back to the last common
ancestor of all living taxa in the group
Diversification: The generic process by which evolutionary line-
ages arise from common ancestors to produce extant taxa. Also
defined as the sum of taxa produced within a clade by speciation
minus extinction.
Endemic: A taxon with a distribution that is restricted to a particu-
lar geographic area or environment.
Gene: A DNA sequence of nucleotides in the genome of an organ-
ism that forms the physical unit of heredity and that affects some
aspect of the organism by coding for the building blocks of pro-
teins or functional RNA molecules.
Gene tree: A bifurcating graph composed of edges and nodes that
define the evolutionary relationships among a set of genes from
multiple taxa.
Genome: The entirety of an organism's hereditary (DNA) informa-
tion, often subcategorized by location in the nucleus (nuclear
genome) or plastids (mitochondrial or chloroplast genomes).
Nodes: In the context of a phylogeny, nodes represent the
branching points representing recent or ancestral speciation
events.
Molecular clock: A hypothesis that the rate at which mutations
occur is constant, or at least linear through time, so that there
exists a linear relationship between the number of accumulated
mutations between two taxa and chronological time.
Population: A group of interbreeding individuals located at a
common geographical location.
Species tree: A bifurcating graph composed of edges and nodes
that define the evolutionary relationships (i.e. phylogeny) among
a set of species (see also Supplementary Information: Geogenomic
hypothesis tests).
Stem group: A group of taxa that includes all of the lineages that
predate the last common ancestor of all living members of the
group, but that are still distinct from the closest living relative of
the crown group. A good example would be theropod dinosaurs,
which are part of the stem group of modern birds. In this case,
theropod dinosaurs are more closely related to extant birds than
to extant crocodilians, which are the closest living relatives of
birds.
Taxon: A taxonomic group at any level in the Linnaean hierarchy
(e.g. species).
technologies, it is certain that data collection will compound exponen-
tially, and it is conceivable, even likely, that complete genomes of taxa
from across the tree of life will become available in the next decade. Ge-
netically distinct populations and species arise in response to environ-
mental variation as a consequence of evolutionary processes, such as
natural selection; conversely the genetic composition of modern taxa
retains information about their environmental past. As a result of this
linkage between genetic composition and environmental history, phylo-
genetics (Box 2) represents a major opportunity for qualitative advance
in geologic reconstruction, particularly given the development of new
bioinformatics approaches for the collection and interpretation of
large genetic data sets. In this paper, biologists and geologists collabo-
rate to envision an emergent field called “geogenomics”, which we
define as the use of large-scale genetic data to test or constrain geolog-
ical hypotheses (Fig. 1). By imagining this future, we hope to hasten
its realization and illuminate possible pitfalls in its application. We
anticipate that geogenomics will be most useful for (1) providing an
independent chronology for a variety of past geologic events, some
of which may be otherwise extremely difficult or impossible to
date, and (2) providing constraint and nuance to paleo-environmental
interpretations.

Geogenomics is deeply rooted in the field of biogeography. From its
earliest history (Wallace, 1852), biogeographers sought patterns in the
distribution of plant and animal taxa to infer their geographic history
and related these patterns to the geological processes that shaped
their evolution. Geological processes that produce vicariance – isolation
of populations in response to the formation of a geographic barrier
to migration and consequent genetic divergence between these
populations – are central in biogeography as drivers of evolutionary
change.
Box 2
Key scaling concepts.

Genetics and genomics—Genetics is a biological discipline inves-
tigating genes, heritability, and variation. Genomics is the study of
the structure and function of the entire genome. Genomic data
comprise whole genome sequences or a broad representative
sample (Elshire et al., 2011).
Molecular phylogenetics and population genetics—Phylogenetics
is the study of the evolutionary history of a set of taxa, including
the patterning, timing, and causes of diversification events.
Population genetics is the study of processes leading to the
genetic differentiation within and among populations, including
demographic and evolutionary processes leading to observed
patterns.
Biogeography and phylogeography— Biogeography is the study of
the distribution of taxa through space and time. Phylogeography
is a specialized branch of biogeography that examines geographic
patterns in the distribution of lineages within or among closely
related taxa (Hickerson et al., 2010). The focus on relative
“closeness” (i.e. time elapsed from a common ancestor) affects
the temporal scale of hypotheses that can be investigated. For
example, the distribution of related plant and animal taxa on differ-
ent continents led to the hypothesis of continental drift (Wegener,
1924), whereas phylogeographic analyses provided evidence
for refugia formation during glacial periods (Emerson and Kolm,
2005).
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Fig. 1. Conceptual illustration of how geogenomics can constrain geologic or climatic scenarios. In the phylogenetic tree (left), black ‘tubes’ represent species (i.e. the species tree), whose
individuals are characterized by genes with different mutational histories (color lines within tubes; i.e. the gene tree). On the right, a climatic time series and temporal variation of a
geologic feature are represented. Red circles and orange dashed lines highlight the correspondence between evolutionary and climatic/geologic events; gray bars represent confidence
intervals for the timing of divergence (left) or the geologic/climatic events (right). Note also that the nodes in the phylogenetic tree on the left have uncertainty associated with them
(i.e. the equivalent error depicted by horizontal error bars in the graphs to the right). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Cladistic or phylogenetic biogeography (focused above the species
level) and phylogeography (focused within or among closely related
species) introduced phylogenies into biogeographic analyses. Time-
calibrated phylogenies (Fig. 2) are used to determine if clades arose
through vicariance or if they attained disjunct (fragmented) distribu-
tions by dispersing across geographic barriers. Comparing the age of
disjunction with the accepted age of barrier formation can help to con-
strain these alternative hypotheses. Hence, in these disciplines geologic
information is used to constrain evolutionary histories (Fig. 1).

Whereas the concept of “reciprocal illumination” (Hennig, 1966),
when applied to historical biogeography, describes the search for
congruence between phylogenetic hypotheses and earth history,
geogenomics encourages the flow of information from biology to
geology. Thus, it builds upon the historic use of biotic patterns to infer
geologic processes, such as the distribution of the Glossopteris flora
and Permo-Triassic vertebrates, which contributed to the development
of plate tectonics (Wegener, 1924). Geogenomics is timely, because of
recent advances in methodologies used to obtain and analyze phyloge-
netic data. In particular, novel platforms for DNA sequencing (“next
generation” approaches) can rapidly providemillions of DNA sequences
from non-model organisms (see Supplementary Information). The
profusion of genomic data and new bioinformatics methods promises
greater phylogenetic precision and the ability to address novel ques-
tions of interest to biologists and geologists.

In this paper we present four examples of outstanding geological
problems that have been addressed by classical geological methods,
but only recently by biogeographic or phylogenetic methods that
provide new insight. In each case we briefly review the problem and
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Fig. 2. Construction of a dated phylogenetic tree (chronogram, constrained branch lengths) b
lengths). Fossil records of known age (schematic leaves) are used to calibrate selected nodes a
alternative explanatory hypotheses. Exemplary published biological
studies are presented, followed by our own suggestions for possible
future geogenomic research. Key vocabulary (bolded text) and concepts
(italicized text) are defined in boxes, and additional detail about
methods for geogenomic hypothesis testing is provided in the Supple-
mentary Information. All of our examples are taken from the New
World tropics, but the global generality of these methods should be
clear to all readers.

2. Geogenomic perspectives on Neotropical geology
and paleoclimate

2.1. Andean uplift

2.1.1. Geological problem
As a major topographic barrier and source of eroded sediment, the

tropical Andes (Fig. 3) are a critical agent of vicariance, habitat creation,
and climate control in the Amazon basin, montane uplands, and Pacific
lowlands. Construction of both theWestern and Eastern Cordilleras has
long been considered the product of Cenozoic shortening, crustal thick-
ening, and isostatic uplift related to subduction of the oceanic Nazca
plate beneath South America. Modern elevation correlates relatively
well with documented shortening and crustal thickness (Isacks, 1988;
Kley and Monaldi, 1998; McQuarrie, 2002), and records of faulting,
exhumation, and associated basin evolution indicate shortening and
flexural loading since Paleocene–Eocene time (Lamb and Hoke, 1997;
Oncken et al., 2006; Horton, 2012; Parra et al., 2012). This conceptual
framework, however, has been recently challenged on the basis of
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Fig. 3. Topographic relief map (SRTM30) of tropical and sub-tropical South America, showing the Amazon Basin and the northern and central Andes. Indicated on themap are the Eastern
Cordillera (EC) and Western Cordillera (WC) of the Andes, the Altiplano, and the Bogotá plateau (BP).
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new stable isotopic and paleobotanic datasets (Fig. 4) suggesting rapid
pulses of high-magnitude uplift over the past 10–20 Myr across parts
of the central and northern Andes (Gregory-Wodzicki, 2000; Garzione
et al., 2006; Ghosh et al., 2006; Garzione et al., 2008; Mulch et al.,
2010; Leier et al., 2013; Garzione et al., 2014; Saylor and Horton,
2014). Additional studies have used indirectmeans to evaluate the loca-
tion, timing and magnitude of surface uplift of the Andes, such as sedi-
ment provenance studies (Roddaz et al., 2005; Horton et al., 2010),
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for the 4 km-high Central Andean plateau (Bolivia) and 2.5 km-high Northern Andean
plateau (Colombia) based on proxy data from oxygen and clumped C–O isotopes
(Garzione et al., 2006; Ghosh et al., 2006; Leier et al., 2013), volcanic glass H isotopes
(Saylor and Horton, 2014), and paleobotany (Gregory-Wodzicki, 2000; Hooghiemstra
et al., 2006). Contrasting paleoelevation estimates for the Altiplano, Eastern Cordillera,
Western Cordillera, and Bogotá plateau (see Fig. 3) highlight the debate over the absolute
timing (early vs. late), tempo (slowvs. rapid), and spatial variability of surface uplift. Ruled
red rectangles depict two hypothetical results that would be consistent with (A) early vs.
(B) late onset of high-elevation conditions necessary for the onset of páramo clades using
a geogenomic approach in testing geological hypotheses (see text for details).
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
river incision histories (e.g., Hoke et al., 2007; Schildgen et al., 2007),
aridification and structural tilting of the western slope (e.g., Rech
et al., 2006; Jordan et al., 2010), and these studies generally agree
with the quantitative estimates of surface elevation change. Such a
punctuated history would support an alternative mechanism of surface
uplift operating at shorter timescales and largely decoupled from short-
ening, crustal thickening, and basin flexure. Removal of lower litho-
sphere is considered the most reasonable alternative and is consistent
with geophysical evidence for large-scale lithospheric thinning or
delamination (Kay et al., 1994; Whitman et al., 1996; Allmendinger
et al., 1997) and local piecemeal removal (Beck and Zandt, 2002).

These exciting new datasets and interpretations are not without de-
bate and help to underscore several critical outstanding and unresolved
issues. First, the long-lived Andean arc shows evidence of protracted
magmatism since the Late Cretaceous. The latest phase of magmatism,
focused in the Western Cordillera over the past ~30 Myr (Haschke
et al., 2006), must have been associated with significant positive topog-
raphy. No detailed studies have addressed paleoelevation of the
magmatic arc forming the western flank of the Andean chain, because
most indicators of past elevation are restricted to sedimentarymaterials
(e.g. paleosol carbonates, fossil leaves, bone, and teeth) further east. Yet,
if high altitudes were attained early in the Western Cordillera, then the
creation of high-elevation habitat and the influence of topographic bar-
riers on climate and delivery of sediments and nutrients to the eastern
lowlandsmay all date tens of Myr earlier than commonly assumed. Fur-
ther concerns include the recognition of competing influences (rather
than purely surface elevation) on the stable isotopic composition used
to deduce paleoelevation. For example, general circulationmodel simu-
lations show that long-term climate change or the presence of large
water bodies in the adjacent lowlands could also produce significant
isotopic shifts in the Andean geologic record (Ehlers and Poulsen,
2009; Poulsen et al., 2010; Jeffery et al., 2012).

image of Fig.�3
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2.1.2. Biological constraints
The Andes contains distinct montane biomes restricted by tempera-

ture and elevation; thus the history of biota endemic to these biomes
can beused as biological proxies for elevation through time. TheAndean
páramo, which is the tropical analog of an alpine tundra ecosystem and
is presently located at 3000–5000 m elevation, occurs above the closed
canopy forest and extends to the upper elevation limit of plant life
(Luteyn, 1999). The páramo is characterized by several endemic plant
radiations, whose life forms include dwarf trees and shrubs, rosette
plants, bunch grasses, and cushion plants. In the northern Andes, a
palynological reconstruction from the Bogotá plateau (reviewed in
Van der Hammen and Cleef, 1986) indicates a Plio-Pleistocene (last
5.3 Myr) origin of the páramo.

The current geological debate about the timing of the Andean uplift
provides two distinct scenarios, which can be constrained by time-
calibrated phylogenies of higher elevation Andean clades (see Picard
et al., 2008 for a case study in a lower region). If the Andes experienced
punctuated uplift during the past 10 Myr (Fig. 4), then the age of the
Colombian páramo should apply broadly to indicate a relatively recent
origin of páramo-restricted lineages. In contrast, under the model of
earlier and more gradual uplift, the most recent ancestors of páramo
clades should be older than the Plio-Pleistocene, extending perhaps
to the Oligocene–early Miocene (Fig. 4). Moreover, the pattern of
diversification can be used to examine how rates of uplift differed
between the Central and Northern Andes. If páramo originated in the
Central Andes, then the earliest branching clades of páramo organisms
could be expected to occur farther south, as shown for several plant
and bird taxa from other Andean habitats.

Phylogenetic studies of groups of páramo plants and birds from the
central and northern Andes agree in showing recent stem ages of
about 5 to 9 Ma for birds (Bates and Zink, 1994; Quintero et al., 2012)
and less than 4 Ma for plants (Saerkinen et al., 2012). Diversification
within the páramo started between 3 and 6 Ma for birds (Quintero
et al., 2012); current species of both plants and birds originated in the
last 1 Myr (Ribas et al., 2007; Quintero et al., 2012; Saerkinen et al.,
2012; Madriñan et al., 2013). This evidence suggests that initial diversi-
fication of the studiedpáramo clades is consistentwith a recent origin of
the páramo biomes, although the origin of contemporary clades may
reflect climate change within already uplifted highlands. Analysis of
additional clades may uncover earlier diversification patterns.

2.2. Great American Biotic Interchange

2.2.1. Geological problem
The great exchange of vertebrates between North and South America

is widely ascribed to the ~3 Ma closure of the Central American
seaway and emergence of the Isthmus of Panama (e.g. Simpson, 1940;
Duque-Caro, 1990; Coates et al., 1992; Coates et al., 2004; Woodburne,
2010). In addition to the biologic effects of this “Great American Biotic
Interchange” (Marshall et al., 1982; Webb, 1991), the presumed late
Pliocene closure event has been implicated as a primary trigger of glaci-
ation in the Northern Hemisphere (Burton et al., 1997; Haug and
Tiedemann, 1998). The isthmus debate, which many considered to
be “solved,” has been re-energized by emerging geological evidence
that suggests a much earlier closure of the seaway. On the basis
of new structural, stratigraphic, and thermochronologic signatures of
shortening, sedimentation, and erosional exhumation, Montes et al.
(2012) suggest a long, complex collision of the Panama volcanic arc
with northwestern South America since mid-Cenozoic time. Although
available plate tectonic reconstructions do not permit precise placement
of the isthmus, recent workers reconstruct an uninterrupted Central
American volcanic chain that was above sea level by the late Eocene
and had collided with northwestern South America by ~25 Ma (Farris
et al., 2011; Montes et al., 2012).

If correct, the interpretation of much earlier closure for the isthmus
would require that previous age estimates of biologic exchange are
grossly in error or that additional non-topographic barriers may have
delayed such interchange. For example, perhaps favorable climatic
conditions, such as aridification of Central America and establishment
of savanna environments, were required for large-scale mammal inter-
change (Molnar, 2008). Accurately resolving this debate is important
not only for reconstructing the late Cenozoic history of North and
South America but also for assessing potential linkages between tec-
tonic or climatic events and changes in biodiversity (e.g. Cane and
Molnar, 2001).

2.2.2. Biological constraints
Faunal exchange represents one of themost important events in the

diversification and extinction of late Cenozoic and modern species in
North America, South America, and the Caribbean region. Accurate
reconstruction of molecular phylogenies can better define the Neogene
(last 23 Myr) record of extinction and speciation in these regions and
help discriminate between competing geologic models of the closure
of the Central American seaway.

In support of an older Isthmus of Panama, Bacon et al. (2013) attrib-
uted relatively early divergence of Central and South American palms to
an earlier landbridge available for palm dispersal. A major flaw in this
argument, however, is that palms and many other tropical tree taxa
(Cody et al., 2010) do not require land bridges to disperse over marine
barriers. This is evidenced by the extreme geographic dispersal ofmem-
bers of the same palm clade to Hawaii and South Pacific and Caribbean
islands (Bacon et al., 2013). Nevertheless, similar application of molec-
ular clocks could address the dynamic responses of both marine and
nonmarine organisms in relationship to isthmus closure (Jackson
et al., 1993).

In addition to its role in facilitating interchange for terrestrial biota,
the isthmus is a geographic barrier formarine organisms. Interpretation
of a long-lived isthmusmay be confirmed or falsified by molecular data
from cross-isthmian divergence times of marine organisms. In a com-
prehensive review, Lessios (2008) reported on 34 trans-isthmian sister
clades of fish, crustaceans, and mollusks with molecular divergence
dated to the late Pliocene (5.3–2.6 Ma). These data imply the absence
of a marine dispersal barrier between the Caribbean and Pacific until
the late Neogene and provide compelling evidence against an older
isthmus model. Some circularity in the dating of these divergences
exists, however, because several authors calibrated their molecular
clock estimates assuming a 3 Ma isthmian closure. But in a significant
subset of the data, fossil-calibratedmolecular clocks provided compara-
ble divergence times, which suggest that the divergence time estimates
are robust.

2.3. Late Cenozoic history of the Amazon River

2.3.1. Geological problem
The Amazon River is by far the greatest transcontinental river on

Earth, yet geologists remain perplexed aboutmany aspects of its history.
Eastward drainage of the Amazon has been linked to rapid uplift of the
Andes and sedimentary “overfilling” of Andean foreland basins (Mora
et al., 2010). Knowing both the timing of Andean uplift and the age
of the river is critical to testing this proposed origination mechanism.
Variable estimates of the development of trans-continental drainage
of the Amazon River basin have been generated from different types
of evidence. A mid-Miocene age has been posited based on changes
in sedimentation rate and sediment geochemistry in marine cores
immediately east of the mouth of the Amazon River. For example,
Figueiredo et al. (2009) studied industry drill cores from the Amazon
continental margin and concluded that the Amazon River originated at
11.8–11.3 Ma on the basis of Nd isotopic evidence for Andean prove-
nance and a concurrent slight increase in Amazon Fan mass accumula-
tion rate (MAR). However, although Nd isotopic ratios shift slightly
toward “Andean values” sometime after 12.5 Ma, they implausibly
return to “non-Andean values” after 5 Ma. A significant MAR increase
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did not begin on theAmazon Fanuntil ca 7Ma, andMARs generally con-
tinued to increase during the Pleistocene (after 2.6 Ma). In drill cores
(ODP Leg 154) from the Ceara Rise in the tropical Atlantic Ocean
(Shackleton et al., 1997), a bathymetric high on the distal eastern mar-
gin of the Amazon Fan, a slight increase in MAR and shift in minor
element composition of terrestrial sediments ca. 10 Ma were ascribed
to Andean erosion and initiation of transcontinental Amazon drainage
(Dobson et al., 2001). However, both the Ceara Rise and Amazon Fan
sequences are greatly influenced by sea level and oceanographic
currents (as well as climate and hydrology, Harris and Mix, 2002) and
therefore do not provide a simple answer to the age of the through-
going Amazon River (Campbell et al., 2006).

Other data suggest a later, late-Miocene to Pliocene, age for the
origins of the modern Amazon drainage system. Latrubesse and co-
workers (Latrubesse et al., 1997, 2007, 2010) conclude that trans-
Amazon drainage occurred sometime between 6.5 and 5 Ma, soon
after deposition of the Solimões Formation ceased in the Solimões
basin of the western Brazilian Amazon. Leguizamon Vega et al. (2006)
used sedimentological evidence to conclude that the Purus Arch was
an effective barrier to eastward, transcontinental Amazon drainage
until at least the late Miocene. In contrast, Campbell and co-workers
(Campbell et al., 2006, 2010) suggested that the transcontinental
Amazon only developed in the late Pliocene. They posit that a huge
paleo “Lago Amazonas” filled most of the lowland Amazon until the
end of the Pliocene, when an imagined divide in the far eastern Amazon
was finally breached, forming the Amazon River and Amazon Fan.

2.3.2. Biological constraints
The riverine barrier hypothesis, first proposed by Wallace (1852),

asserts that large rivers act as barriers between populations and lead
to biological differentiation and eventual speciation. Wallace observed
that the main-stem Amazon separated phenotypically distinct species
of monkeys on its north and south banks. Similar observations have
been made for other taxa, including birds (Haffer, 1974; Cracraft,
1985), butterflies (Brown, 1979), and additional primate species (Silva
et al., 2005). If Amazonian rivers were indeed the drivers of vicariance
for these taxa, it follows that dated phylogenies of the separated sister
taxa can place limits on the age of river establishment.

For example, the genus Psophia (Aves, Gruiformes) occurs through-
out the Amazon Basin, with species distributions clearly delimited by
themain Amazonian rivers. Ribas et al. (2012) showed that the diversi-
fication events within Psophia suggest a sequence of drainage evolution
during the last 3 Myr involving an initial split related to the lower
Amazon River, subsequent splits related to the upper Negro and
Madeira rivers, and more recent splits between adjacent interfluves
on the Brazilian shield (Fig. 5). Additionally, ages of diversification
events in other Amazonian avian and primate groups that show strong
spatial correlation between lineage distributions and large Amazonian
rivers indicate that current species originated during the Plio-
Pleistocene (Ribas et al., 2005; Boubli et al., 2012; d'Horta et al., 2013).
These data suggest the possibility that the Amazonian drainage has
been very dynamic during the Plio-Pleistocene and played an important
role in the origin of current species. Nonetheless improved geological
data and interpretation are needed to inform phylogenetic studies,
while further geogenomic study is poised to place significant con-
straints on Amazon geological history.

2.4. Quaternary climate variation and vegetation history

2.4.1. Geological problem
The large-scale Quaternary (last 2.6 Myr) climate variation evident

in the waxing and waning of continental ice sheets in the Northern
Hemisphere and globally changing atmospheric CO2, temperature, and
sea level has long been presumed to drive massive moisture changes
in the Neotropics and in turn affect the past distribution of landscapes
and associated biomes. The inferred environmental changes have been
invoked as factors driving the distribution of organisms and their
subsequent diversification and extinction. One of the most prominent
hypotheses linking climate change to the generation of tropical biodi-
versity is the Amazon refugia hypothesis (Haffer, 1969), which stated
that during Pleistocene dry periods fragments of Amazon forest
persisted in regions of high rainfall (refugia) separated by vast savannah
and that populations isolated in these refugia underwent accelerated
rates of allopatric speciation. Thus, refugia became species pumps and
centers of endemism (Haffer and Prance, 2001). Haffer's hypothesis
has subsequently been disputed on several grounds — his centers of
purported endemism overlap with areas of high collection intensity
and may be artifacts of sampling (Nelson et al., 1990); many species
complexes originated prior to the Pleistocene (reviewed in Moritz
et al., 2000); and there is no strong evidence that the Amazon forest
was fragmented, at least during the latest significant cold period, the
Last Glacial Maximum ~20 Ka (reviewed in Mayle et al., 2009). How-
ever, some of these counter-arguments are also disputed.

During the past few decades, many late Quaternary pollen records
have been generated from tropical South America to evaluate how
plant populations responded to Quaternary climate variation and
whether or not tropical biomeswere fragmented. These records portray
spatially diverse patterns of vegetation change at various temporal
scales. During the last glacial period (~20–60 Ka), Andean forest taxa
moved downslope, and savannah or dry tropical forest expanded at
the eastern and southern margins of the Amazon Basin (Mayle et al.,

image of Fig.�5
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2009). Although no paleoecological evidence supports widespread
contraction of mesic tropical forests or expansion of savannah in the
Amazon basin during glacial times, it is not yet clear if this is merely
a shortcoming of paleoecological sampling, as the majority of paleo-
ecological records are from the margins of the Amazon, no central
Amazonian records contain sediments from the Last Glacial Maximum,
and most Quaternary records span b50 Kyr (Mayle et al., 2009).

Recent high-resolution records of paleoclimate, particularly from
speleothems and lake sediment cores, are generating greatly improved
understanding of late Quaternary climate variation and demonstrate
that large-scale moisture variation occurred in the Amazon and adjoin-
ing Andes. The largest changes in moisture availability occurred on
~100 Kyr (eccentricity) cycles, synchronous with global glaciation:
the southern tropical Andes and western Amazon were the wettest
(maximum precipitation minus evaporation) during glacial stages and
the driest during interglacial stages (Fritz et al., 2007). Large precipita-
tion changes were paced by the 20-Kyr precession cycles: in the west-
ern Amazon and tropical Andes, high precipitation rates, associated
with increased intensity of the South American summermonsoon, coin-
cided with austral summer seasonal insolation maxima (Baker et al.,
2001; Cruz et al., 2005; Wang et al., 2006). Precipitation north of
the equator was anti-phased with that farther south (Peterson et al.,
2000). However, precipitation variation was also anti-phased between
the western Amazon and eastern Amazon/Nordeste of Brazil (Cruz
et al., 2009; Cheng et al., 2013). The spatial patterns of millennial mois-
ture changes were different from those at precessional scales: whereas
northern hemisphere cold events were dry in northern South America,
the tropics south of the equator were wet (no evidence of an east–
west dipole) (Peterson et al., 2000; Cruz et al., 2005; Wang et al.,
2006; Fritz et al., 2010; Kanner et al., 2012; Mosblech et al., 2012;
Cheng et al., 2013).

2.4.2. Biological constraints
How these large and spatially variable changes in moisture affected

Quaternary expansion, contraction, and connectedness of populations
of neotropical organisms and subsequent diversification and extinction
are insufficiently explored; thus key aspects of the refugia hypothesis
in its broadest sense remain untested. Cheng et al. (2013) set out the
provocative hypothesis that during past wet periods forest corridors
connected presently disjunct regions: the western Amazon with the
southwestern Atlantic rainforest of Brazil or the southeastern Amazon
with the eastern Atlantic rainforest. Their data imply that the presently
wet western equatorial Amazon was a likely wet “refugium” during
some phases of the Pleistocene, while the presently drier eastern
Amazon (as well as the northern and southern ecotones) was a likely
dry “refugium”, where rain forest fragmentation, population decline,
and species loss would have been greatest, but where dry-adapted
species would have thrived.

The pattern and tempo of tropical diversification have been illumi-
nated by the recent proliferation of phylogenetic data. Phylogenetic
analyses of complexes of extant species (crown groups or clades)
suggest that the origination of most studied Amazon clades dates from
the Neogene or earlier. This perspective highlights pre-Quaternary geo-
logical processes, such as mountain building and river evolution, in the
generation of neotropical biodiversity (Hoorn et al., 2010; Bennett et al.,
2012). However, other analyses considering the age of extant species
(instead of crown clades) suggest considerable speciation during the
Quaternary and approximately constant diversification rates through-
out the Neogene and Quaternary (Rull, 2008, 2011). This suggests a
substantive role for Quaternary processes in speciation and in shaping
present biodiversity patterns. This relationship is best evidenced by
phylogenetic analyses that sample closely related species.

Population genetic data used within a coalescent framework
(Supplemental Information) permit reconstruction of the expansion,
contraction, and connectedness of populations of Neotropical organisms
during the late Quaternary and can test predictions about environmental
history derived frompaleoclimatic studies, because it is possible to detect
from the current distribution of genetic diversity whether a population
has gone through recent changes in size (Beaumont et al., 2002).
The concept behind this approach is to fit mathematical models of pop-
ulation demographics (e.g. growth rate) to observed patterns of genetic
diversity. During dry periods, mesic forest taxa should be negatively
affected, with reduced ranges and population sizes. In contrast, popula-
tions adapted to dry or open areas would expand and become more
connected in periods of dry climate, allowing greater gene flow.

At present, few species have been sufficiently sampled or studied
to approach these questions, but there are examples of forest taxa
(Carnaval et al., 2009; d'Horta et al., 2011; Ribas et al., 2012; d'Horta
et al., 2013; Jones et al., 2013) that show signs of recent population
expansion in Amazonia, Central America, and the southern Atlantic for-
est, but population retraction in the northern Atlantic forest (d'Horta
et al., 2011). Also, currently isolated populations that occur in open
areas within or around Amazonia seem to have been more connected
during the Late Pleistocene (Wuster et al., 2005; Bonvicino et al.,
2009; Vargas-Ramírez et al., 2010; Capurucho et al., 2013).

3. Discussion

The concept of reciprocal illumination highlights the potential
knowledge that can be gained through interactions between biologists
and geologists (Fig. 1). One outcome of a more thorough integration of
biology and geology will be better reasoned and better vetted develop-
ment of the mechanistic links between Earth history and biotic diversi-
fication. Research programs that are framed within the context of both
biological and geological scenarios from the start and that simulta-
neously seek reliable data from both fields will be more successful in
understanding the evolution of the highly complex environments that
arise from the interaction between life and Earth. Too often, probably
due to lack of communication between the disciplines, biogeographic
studies create a narrative for the causes of diversificationmaking overly
simplistic and sometimes incorrect assumptions about complex geolog-
ical processes. On the other hand, geologists are generally not aware of
how biological data can informmajor debates regarding tectonics, land-
scape evolution, and climate history. Although we have presented only
four examples of the “reciprocal illumination” between geology and
biology, all from the Neotropics, it is clear that many other geological
problems from many other geographic settings are equally amenable
to geogenomic approaches (e.g. Genner et al., 2010).

Several of our examples underscore the importance of retaining
some level of independence, at least in approaches to determining the
timing of events. For example, biologists often use the timing of biogeo-
graphic events determined from the geological literature to calibrate
molecular clocks, which subsequently may be used as an independent
age estimate by geologists interested in the same phenomena. We
cited one such example — molecular clock estimates for marine taxa
that explicitly assumed 3Ma closure of the Isthmus. It is generally prob-
lematic to use biogeographic events (such as the emergence of migra-
tion barriers) to calibrate molecular clocks, because one must then
assume a vicariance history, thereby ignoring alternative hypotheses,
such as more recent cross-barrier dispersal. Alternatively, such biogeo-
graphic events can be used as maximum divergence times, thereby
allowing for the possibilities of more recent dispersal.

Circularity between geological events and phylogenetic dating can
be furtherminimized through sampling designs and analytical methods
that allow the use of fossils and/or biogeographic events that are as
independent as is reasonable to the question at hand. For example,
statistical methods are available for use of single or multiple calibration
points inmolecular phylogenies that incorporate fossils that are distant-
ly related to the focal taxon (Wertheim et al., 2010; Yang and Rannala,
2012). These methods work by allowing the statistical transformation
of molecular divergence into divergence times to vary throughout a
phylogeny (i.e. molecular rates of evolution varywithin the phylogeny).
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Such calibrations, depending on the global context of the geological
events under scrutiny, should be independent of the geological ques-
tions under study.

As articulated by Avise (2000) as “taxonomic congruence”, time
estimates from multiple time-calibrated phylogenies should be used
to robustly evaluate geological hypotheses. While the number of time
estimates (i.e. the number of time-calibrated phylogenies) obviously
affects the reliability of a mean across estimates, efforts should be
made to providemultiple time estimates that are phylogenetically inde-
pendent, representing different groups that are affected by the same
barrier. In the end, congruence across estimates may be more informa-
tive when they are made from phylogenetically independent taxa that
have differing life histories rather than just a large number of taxa.

In some cases, time estimates derived from time-calibrated phylog-
enies have associated variances that can preclude them from being use-
ful in a geogenomic context. This variance results from three sources:
sampling variance (e.g. sampling some but not all species within a
clade), evolutionary variance (i.e. the variance resulting from the evolu-
tionary process, see Nei, 1987), and variance associated with age of the
fossil or biogeographic events used for calibration (Graur and Martin,
2004). For example, it may be difficult to differentiate between geolog-
ical hypotheses that are temporally adjacent, especially when variance
is correctly taken into account. This does not mean, however, that
molecular data are uninformative about the timing of events, just that
the events under scrutiny are not differentiated enough temporally
(e.g. see Eckert et al., 2008 for an example with testing hypotheses
based on Holocene versus Pleistocene events). In practice, this typically
means that the hypotheses being tested should have dates separated by
hundreds of thousands tomillions of years. It is the responsibility of the
researcher to fully report uncertainty associated with time estimates
(Bromham and Penny, 2003; Graur and Martin, 2004; Parham, 2012).
Uncertainty associated with fossil ages and strata can be easily incorpo-
rated as priors in Bayesian phylogenetic analyses (e.g. Drummond et al.,
2006). This kind of uncertainty is often better understood by geologists
and paleontologists than by evolutionary biologists, thus providing
another important point of collaboration.

Looking ahead, we can expect great methodological advances in
generating and analyzing genomic data, which will provide great op-
portunities for earth scientists who are prepared to understandmodern
genetic methodologies and results. Therefore, we encourage geoscien-
tists to learn the basis and assumptions involved in the use of phyloge-
netic data, to construct hypotheses that can be tested with genomic
data, and to collaborate with biologists to undertake these tests. We
believe that the application of geogenomics has the potential to revolu-
tionize many fields of Earth sciences.
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