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ABSTRACT: The relative rates of sediment accumulation, erosion, and structural uplift determine whether a growing
fold develops positive topographic relief, is beveled by antecedent streams, or is buried under thick growth strata.
When folds rise in subsiding basins, upward, convergent flow of groundwater through the permeable growth strata
that underlie antecedent streams enhances the flux of ions required for concretion growth. Early diagenetic
concretions that grow in such alluvial strata may constitute the only clasts larger than sand size available for transport
when antecedent streams become erosive. The first reworked concretions deposited by these streams should accurately
mark the transition from aggradation to erosion as folds rise into the paths of streams. In this situation, the ability to
differentiate reworked from in situ concretions is crucial.

The west-vergent Simpson Ridge anticline, a N–S-trending, thick-skinned Laramide structure in east-central
Wyoming, separates the larger Hanna basin from the Carbon basin. Near the north nose of this anticline, in situ iron-
oxide-rich concretions are abundant in folded Paleocene strata (Ferris Formation) and, just to the east, large,
reworked, iron-rich concretions are abundant in younger, more gently dipping conglomerates in the basal Hanna
Formation of the backlimb. Smaller reworked concretions are also present near the base of the Hanna Formation at
least 7 km south of the anticlinal nose and just east of the fold’s axis.

At the anticlinal nose, in situ (non-reworked) concretions up to 3 m 3 1 m 3 1 m are abundant at the top of an~ 7-
km-thick sequence of sandstones and siltstones that constitute the Late Cretaceous–early Paleocene Ferris Formation.
Reworked concretions are absent in the strata hosting these in situ concretions, but reworked concretionary clasts up
to 2 m in diameter are present in exposures of conglomerates in the lowermost Hanna Formation that lie just above
the in situ Ferris concretions and southeast of the anticlinal nose. These early-diagenetic concretions were originally
cemented by siderite (FeCO3). Oxidation of some small, rinded siderite-cemented clasts took place after their fluvial
transport into the Hanna Formation, but abundant angular, un-rinded, iron-oxide-cemented clasts indicate that many
large, in situ siderite concretions had resided in the vadose zone before they were entrained. The distribution of
reworked concretions and the orientations of crossbeds show that antecedent Hanna streams eroded a swath at least 5
km wide across the rising structure. These streams transported Ferris Formation concretions southeastward into the
Carbon basin, and deposited them in a conglomeratic sandstone body in the Hanna Formation. Large calcite-
cemented concretions, many with a pipe-like morphology, then grew within Hanna crossbeds. In many cases, these in

situ concretions enclose transported, iron-rich concretions, but there is no evidence any calcite-cemented concretions
were reworked. The NW–SE alignment of the pipes record southeastward flow of groundwater and thus also provide
evidence (together with the orientation of the crossbeds) of the original continuity of the Hanna Formation across the
anticline.

Reworked concretions reveal the interplay of deposition, diagenesis, and erosion. Due to convergent groundwater
flow over growing anticlines, early diagenetic concretions, both in situ and as reworked clasts, are especially likely to
be found in growth strata.

INTRODUCTION

Early diagenetic, siderite-cemented concretions are common in

sedimentary rocks and can provide clues to paleoclimate, pore-water

chemistry, and sedimentation rates (Gautier 1982; Mozley 1989;

Ludvigson et al. 1998; Ludvigson et al. 2010). Like other products of

early diagenesis, siderite concretions can be reworked into sedimentary

lags by high-energy fluvial or marine processes (Fig. 1; Allen 1987; Pye et

al. 1990). Although many geologists are sufficiently familiar with chert

nodules and calcrete to recognize their reworked remains, siderite can be

altered into iron-oxide-cemented forms that are less easily identified.

Siderite is unstable in the presence of O2. Siderite concretions are fully

preserved in outcrops of Cretaceous marine mudrocks on the western Great

Plains of North America (Gautier 1982). The ions required for growth of

these concretions came from the surrounding muddy sediment. In sandy

sediment, the ions required for concretion growth can travel much greater

distances (Loope and Kettler 2015). Those siderite concretions that grow in

permeable sandstones and unconsolidated alluvium are likely to be altered

to iron oxide when, due to tectonic uplift, they approach the land surface.

In oxidizing, shallow groundwater, iron-oxidizing microbes can transform

siderite concretions into dense iron-oxide rinds surrounding friable, iron-
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poor interiors (van der Burg 1969; Loope et al. 2012), or into a

combination of dense, iron-oxide-cemented bands and iron-oxide stain

(true Liesegang; Kettler et al. 2015; Burgess et al. 2016). Large siderite

concretions in sandstones are commonly fractured into small, three-

dimensional compartments; oxidation along the fractures generates

boxworks delineated by dense accumulations of iron oxide (Taylor 1949;

Loope et al. 2011; Loope et al. 2012; Burgess et al. 2016).

In the greater Hanna basin of south-central Wyoming (Fig. 2), as much

as 7 km of Upper Cretaceous to lower Eocene strata are present in the

Ferris and Hanna formations. These rocks accumulated in the span of about

10 Myr (Lillegraven 2015) and are dominated by sandstones, siltstones,

and shales, but also contain numerous lignites and coals. All previous

authors have attributed the great thickness of the Ferris and Hanna

formations to syndepositional tectonism, but there is considerable

disagreement concerning the relationship between surface drainages and

active structures (Ryan 1977; Lillegraven and Ostresch 1988; Wroblewski

2006; Lillegraven et al. 2004). Ferris strata accumulated near the western

margin of the Cannonball Sea (Wroblewski 2006; Boyd and Lillegraven

2011), but fluvial strata and hiatuses in the Hanna Formation may record

the sinuous pathway of the Paleogene ‘‘California River’’ (Davis et al.

2010) through Wyoming’s Laramide uplifts on its way to the western Gulf

of Mexico (Blum and Plecha 2014; Sharman et al. 2017). Lillegraven

(2015) provided highly detailed geologic maps, cross sections, and

voluminous field notes on the structure and stratigraphy of the eastern

portion of the Greater Hanna basin, including most of the Carbon basin

(Fig. 2) that have aided this study.

In this paper, after first setting the stratigraphic and tectonic framework,

we focus on the origins and distributions of two kinds of iron-rich

concretions, and then address their significance to changing rates of fluvial

aggradation, erosion, and tectonic uplift. In our study area (Fig. 2), in situ

iron-oxide-cemented (formerly siderite) concretions are laterally and

stratigraphically widespread in the Ferris Formation. In the study area,

the younger Hanna Formation contains abundant reworked, iron-oxide-

cemented concretions near its base, as well as abundant in situ calcite-

cemented concretions throughout its exposed thickness. After describing

the spatial distributions and the similarities and differences between the in

situ and the reworked concretions, we argue that the reworked concretions

in the basal Hanna Formation were derived from nearby outcrops of the

Ferris Formation as they were eroded during uplift along the Simpson

Ridge anticline (now separating the Hanna and Carbon basins; Fig. 2).

Although he did not recognize the reworked nature of the iron concretions

that are the focus of this paper, Secord (1998) proposed a similar scenario.

He suggested that some distinctive coarse-grained clasts (dark chert

pebbles, silicified Paleozoic marine fossils, silicified wood) found in the

basal Hanna Formation in the Carbon basin were reworked from the Ferris

Formation by southeast-flowing rivers. He noted that pebble conglomerates

found in the basal Hanna Formation were atypical of the Hanna Formation

but resembled typical gravels of the Ferris Formation, especially as seen in

outcrops on Hi Allen Ridge on the northern end of the Simpson Ridge

anticline (Fig. 2).

The distribution of reworked iron concretions, together with data based

on orientations of crossbeds and in situ, pipe-like concretions, show that

both the Ferris and Hanna formations are composed of growth strata

deposited during rise of the Simpson Ridge anticline (Fig. 3). Where rivers

interact with growing folds, reworked early-diagenetic concretions may

constitute the only large, durable clasts available for transport by

antecedent streams. If present, these clasts can accurately (and prominent-

ly) mark the transition from aggradation to erosion as tectonic structures

rise into the paths of fluvial systems. The geometry of permeable growth

strata deposited in water gaps above impermeable pre-growth strata

constrains both lateral and vertical flow in the unconfined aquifer (Fig. 3).

This results in narrower flow bands and increased Darcy velocity above the

constriction (Freeze and Cherry 1979, p. 21), making the growth strata

especially favorable sites for concretion formation.

STRATIGRAPHIC AND TECTONIC SETTING

The Hanna and Carbon basins, relatively small structural basins located

in southeastern Wyoming, were tectonically active from Late Cretaceous to

middle Eocene time (Blackstone 1983, 1993; Merewether 1983; Love

1970; Lillegraven et al. 2004; Lillegraven 2015). Before widespread

deformation in the Paleocene and middle Eocene, these basins were part of

a much larger depositional basin including the Greater Green River Basin

to the west and the Laramie basin to the east (Lillegraven et al. 2004;

Lillegraven 2015). The Hanna and Carbon basins are now separated by the

Simpson Ridge anticline, a west-vergent structure that plunges NNE and is

exposed at the surface for about 25 km (Fig. 2). Wroblewski (2003)

estimated the combined thickness of the Ferris and Hanna formations in

the Hanna basin to be ten times their combined thickness in the adjacent

FIG. 1.—One very large, calcite-cemented

concretion (CC) that encloses dozens of large,

reworked iron-oxide-cemented (formerly siderite)

concretions. Crest of Halfway Hill (418 48.939 0 N;

1068 15.8530 W; WGS 84 datum).
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Carbon basin. The relative thinness of the Ferris–Hanna strata of the

Carbon basin compared to their great thickness in the Hanna basin was

largely due to high subsidence rates in the basin center and uplift of

Simpson Ridge anticline (Wroblewski 2003). The Ferris and Hanna

formations in the Carbon basin are separated by an erosional unconformity

that may record the loss of thick strata or long periods of non-deposition.

Lillegraven (2015) hypothesized that uplift of Simpson Ridge may have

coincided with major erosional scouring of Carbon basin strata.

Various timing relations have been proposed for development of the

Simpson Ridge anticline. Ryan (1977) stated that it was tectonically active

during deposition of both the Ferris and Hanna formations (Lower

Cretaceous through the Paleocene). Lefebre (1988) argued that Simpson

Ridge became prominent during deposition of the Hanna Formation.

According to Secord (1998), the primary formation of Simpson Ridge

occurred in the early Paleocene after deposition of local lower Ferris

Formation, but before deposition of local Hanna Formation. In contrast,

Hansen (1986) and Lillegraven (2015) concluded that Simpson Ridge

formed later, in the early or middle Eocene. The age of the Ferris Formation

on Simpson Ridge is poorly constrained but, based on biochronologic ages

of fossils in the northern Hanna basin, the Ferris Formation in the type area

was deposited during the latest Cretaceous (Maastrichtian) and early

Paleocene (Danian). Both Late Cretaceous dinosaur and Puercan (early

Danian) mammal fossils are known from the Ferris Formation (Eberle and

Lillegraven 1998a, 1998b). A similar age range for the Ferris Formation on

Simpson Ridge is probable since the overlying Hanna Formation is not older

than late Danian (assuming a depositional contact, see below).

Secord (1998) placed a partial age constraint on the folding of Simpson

Ridge using mammalian fossils found in the northern Carbon basin in the

basal Hanna Formation, which he interpreted as onlapping an already

folded anticline. The Hanna Formation along the eastern margin of

Simpson Ridge dips eastward by ~ 20–35 degrees (Lillegraven 2015, his

fig. 5), which Secord interpreted as evidence for additional uplift following

deposition of the basal Hanna Formation. Ryan (1977) suggested that the

upper Ferris Formation was deposited by streams flowing around the north

nose of the anticline, and that tilting of both the Ferris and the Hanna

formations resulted from continuing growth of the anticline.

FIG. 2.—Geologic map and stratigraphic column of study area and vicinity. Colored dots and ellipses show distribution of studied concretions. Arrows with accompanying

circles show mean orientations of trough cross-strata measured from the Hanna and Ferris Formations; three of the paleocurrent arrows are from Ryan (1977). Star marks the

site of the former town of Carbon. Map is modified from Lillegraven (2015), his figure 5. Highly generalized column is based on Lillegraven’s figure 2, and emphasizes

features described in the text. Note that, due to localized tectonism, stratal thicknesses vary widely.
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Mammalian fossils in the basal Hanna Formation in the northern Carbon

basin at Grayson Ridge and Halfway Hill (Fig. 2) indicate an age close to

that of the Torrejonian–Tiffanian North American land-mammal age

boundary (Secord 1998). The boundary between these land-mammal ages

lies very close to the C27n–C26r magnetochron reversal (Archibald et al.

1987; Lofgren et al. 2004), placing these rocks in the upper Danian (late

early Paleocene) at ~ 62 Ma (Ogg 2012).

A significant intraformational unconformity low in the Hanna Formation,

but above its base, was recognized by Secord (1998) based on mammal

fossils that were collected from directly above and below a deeply channeled

erosional surface at Halfway Hill. Lag deposits associated with this

unconformity are darkly stained and contain abundant reworked iron

concretions. Fossils above this surface constrain the age of these rocks to

middle and/or late parts of the Tiffanian land-mammal age. Biostratigraphic

revision of the Tiffanian (Secord et al. 2006; Secord 2008) since these fossils

were first described suggests age equivalence to the Ti-4a or Ti-4b Tiffanian

biozones of the Bighorn basin. Arctocyon mumak, which occurs above the

intraformational Hanna unconformity, is known only from these zones in the

Bighorn basin. Specimens of Plesiadapis, found stratigraphically lower (but

still above the unconformity), could belong to species that are slightly older

(P. rex), slightly younger (P. fodinatus), or age equivalent (P. churchilli) to

A. mumak. Taken together, these fossils suggest age equivalence to the Ti-3

or Ti-4 biozones, which correlate to upper Selandian and earliest Thanetian

stages respectively (Secord et al. 2006). This implies a hiatus of at least 1.2

Myr, and more probably 2 to 3 Myr (based on A. mumak) for the

intraformational Hanna unconformity.

In agreement with the conclusions of Wroblewski (2003), we argue below

that paleoflow indicators from sandstones (in both the Hanna and Carbon

basins), the reworked concretions in Hanna Formation conglomerates east of

the Simpson Ridge anticline, and widespread soft-sediment deformation in

the Hanna Formation are all fully consistent with syntectonic control of

drainage and accommodation. Gentle folding of the youngest Hanna

Formation at Halfway Hill (Fig. 2) indicates that tectonism continued after

deposition of the local Hanna Formation was had ceased.

Wroblewski (2003) recognized lacustrine deposits of middle Paleocene

age in the central Hanna basin. He interpreted basal strata of the Hanna

Formation in the Carbon basin (exposed along the axis of the Halfway Hill

syncline; Fig. 2) as an erosional paleovalley, and he linked this valley to

another paleovalley in the Hanna basin (upstream to the west) at a similar

stratigraphic level.

Lillegraven (2015) argued that the Ferris Formation, deposited on both

sides of the Simpson Ridge anticline, pre-dated uplift of that anticline.

Higher on the limbs of this structure, Hanna Formation strata rest directly

on steeply dipping mudstones of the Medicine Bow Formation; Lillegraven

(2015) interpreted this contact as tectonic, rather than depositional, and

proposed a provocative hypothesis: he mapped the entire Hanna Formation

of the Carbon basin as a thick, 17-km-wide structural klippe (Fig. 2).

Immediately east of the anticlinal axis, however, the Hanna Formation

contains large, reworked concretions and rests upon a much thinner Ferris

Formation. In the Discussion, we point out that the klippe hypothesis does

not account for the source or stratigraphic distribution of the conglomerate

that contains the reworked concretions, nor for the paleoflow indicators in

the sandstones. We argue that such clasts, sedimentary structures, and

spatial relationships, however, are to be expected where products of early

diagenesis grow within the deposits of rivers that cross rising anticlines.

IN SITU, IRON-RICH CONCRETIONS IN THE

FERRIS AND HANNA FORMATIONS

Description

Secord (1998), Hasiotis and Honey (2000), Lillegraven et al. (2004, p.

58–63), and Lillegraven (2015) have reported sideritic strata in the Hanna

Formation. Lillegraven (2015, p. 63, 104) described an area that contains

unusually iron-rich strata in the Ferris Formation. These outcrops lie along

the flanks of Simpson Ridge anticline, along Number 5 Ridge (Fig. 2).

Compared to other Ferris Formation outcrops, concretions are abundant,

large, and well-exposed. These dark masses are developed in light-colored,

1–2-m-thick bodies of fine, structureless to faintly cross-bedded sandstone

(Fig. 4A). The sandstones are tabular and show few signs of channeling. We

found neither body fossils nor trace fossils in the concretion-bearing rocks.

In strongly weathered outcrops, disintegrating concretions are defined

by piles of centimeter-scale, angular blocks of iron-oxide-cemented

sandstone. In road cuts and in some natural exposures, the concretions

are seen to be ovoid to tabular and up to 1 m thick and 3 m long (Fig. 4).

Macroscopically, iron-oxide cement forms: 1) single or multiple,

isopachous rinds from 3 mm to 1.0 cm thick that envelop many of the

concretions; and 2) isopachous linings of rock fractures that are present in

the concretions (Fig. 4B). The iron content of sandstone in the concretions

diminishes inward from edges of blocks defined by the rinds and joints.

Thin sections show that all iron is present as iron oxide; we did not observe

FIG. 3.—Interpretive cross section of the

Simpson Ridge anticline showing relationships

between the growing structure, stream flow,

groundwater flow, and the distribution of in situ

and reworked concretions. Growth strata were

deposited by an eastward-flowing river system

during active uplift of the structure. Vertical

convergence of groundwater as it flowed across

the structure increased the flux of ions and

dissolved organic matter, enhancing concretion

growth. Stratal thicknesses and lateral extents of

in situ concretions are poorly constrained. Mod-

ified from Burbank et al. (1996); cf. Wroblewski

(2003), his figure 7.
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siderite. In the concretions, iron oxide occurs as intergranular cement in a

grain-supported sandstone matrix. Thin sections show very few grain-to-

grain contacts; cement and primary pores occupy 45–50% of the rock

fabric. In rinds and fracture linings of the concretions, pores are completely

filled by cement (Fig. 5A); in the inner portions of concretions, primary

pores are surrounded by meniscate, iron-oxide cement (Fig. 5B). Iron-

oxide cement immediately adjacent to the meniscate cements commonly

forms small (~ 0.1 mm) rhombs (Fig. 5B). In hand specimens, the inner

portions of some concretions have a speckled appearance; a hand lens

reveals these speckles to be millimeter-scale, irregular- to rhomb-shaped,

masses. Thin sections show that each mass contains numerous detrital

grains (Fig. 5C, D).

Interpretation

Even though siderite is absent from the outcrops of the study area, a

sideritic origin for the concretions is supported by our field observations and

thin sections. Siderite is a common mineral in sedimentary rocks, but it is

stable only in reducing pore waters (Berner 1971). It is absent in the

concretions that crop out in our study area because these concretions formed

in porous and permeable rocks. From in situ concretions in Triassic and

Jurassic strata, Loope et al. (2010, 2011), Loope and Kettler (2015), and

Burgess et al. (2016) described morphologic features very similar to those

seen in the concretions of our study area, and attributed them to siderite

oxidation.

Primary (de novo) iron oxide accumulations are difficult to explain. In

waters with nearly neutral pH, iron is soluble only in reducing

environments as Feþþ. These waters instead precipitate ferrous minerals

like siderite, pyrite, and marcasite. According to Curtis and Coleman

(1986), most iron-oxide concretions are best interpreted as the oxidized

remains of reduced-iron precursors. Rinds formed along concretion

perimeters and along internal fractures below the water table where

reactions were likely catalyzed by iron-oxidizing microbes that occupied

redox boundaries between diffusing oxygen and diffusing ferrous iron

(Weber et al. 2012). Rhomb-shaped masses and meniscate iron-oxide

cements (Fig. 5B) formed in the vadose zone (see Loope and Kettler 2015).

We interpret the rhombic masses of iron oxide as pseudomorphs after

euhedral siderite (Fig. 5A, D). The larger rhombic to irregular ‘‘speckles’’

(Fig. 5C, D) are composed of iron oxide that replaced poikilotopic siderite

crystals. Preservation of pseudomorphs required in situ oxidation of the

euhedral siderite crystals—ferrous iron did not diffuse along centimeter-

scale paths as it did during rind formation.

The large size, ovoid shape, and uncompacted fabric of the Ferris

concretions are similar to those described by Gautier (1982) from outcrops

and cores of the Cretaceous Gammon Shale (marine; northwestern

Wyoming and western South Dakota). The large fraction of pore-filling

cement in the Ferris Formation (Fig. 5A) indicates that the siderite

concretions formed early (pre-compaction). Post-depositional uplift,

denudation, and fracturing of the Ferris and Hanna formations allowed

oxygenated meteoric water to infiltrate the porous sandstone and its

concretions, leading to alteration of the siderite to iron oxide.

The abundance of coal, the relative scarcity of pyrite, and the evidence of

an abundance of siderite cement in the Ferris Formation all suggest a

nonmarine setting for the strata of our study area. However, recent detailed

studies of sedimentary structures in some Ferris Formation sandstones

suggest at least the episodic presence of shallow marine conditions during

Ferris deposition (Boyd and Lillegraven 2011). We interpret the tabular

sandstones in the study area as meandering-stream deposits. Deciphering the

position of the paleo-shoreline is difficult. The presence of the large and

abundant siderite concretions suggests that the sulfate concentration in the

pore water was low during early diagenesis—an indication that the

concretions did not form in marine pore water (Berner 1981; but see Gautier

1982). In our study area, Wroblewski (2006) reported evidence for marine

conditions in the form of sedimentary structures indicative of tidal deposition

that contained the skeletal remains of selachian fishes above the Hanna–Ferris

contact and interpreted those deposits as estuarine. The ichnogenus

Rhizocorallium is widely recognized as originating in marine, subtidal

environments and has been found in abundance in the uppermost third of the

Ferris Formation in an outcrop about 45 km WNW of our study area. Boyd

and Lillegraven (2011) argued that the Hanna basin was episodically

connected to either the Cannonball Seaway or a Gulf Coast embayment.

Because we have not recognized body fossils or trace fossils indicative of

marine conditions, we favor a nonmarine coastal plain as the depositional

setting for the Ferris Formation sandstones that host the large concretions.

REWORKED, IRON-RICH CONCRETIONS

Description

Reworked, iron-rich concretionary clasts are prominent components of

conglomerates near the base of the Hanna Formation and lie south and

FIG. 4.—In situ iron-oxide-cemented concretions in sandstone, Ridge No. 5; see

Figure 2 for location. A) Ovoid to tabular iron-rich masses (arrows) originally grew

as siderite concretions within a matrix of light-colored, tabular sandstone. B) Ovoid

concretion with multiple fractures lined by iron-oxide-cemented sandstone. Fractures

provided conduits for O2-rich water during siderite oxidation. Longest axis (left-

right) and intermediate axis (top to bottom of photo) of the concretion grew parallel

to bedding of the host sandstone.
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southeast of Ferris Formation outcrops containing abundant in situ

concretions (Fig. 2). These conglomerates are best exposed at Grayson

Ridge and Halfway Hill (Figs. 2, 6) where they underlie well-sorted

sandstones. Soft-sediment deformation is present in both the sandstones

and the conglomerates of the lower Hanna Formation (Figs. 6–8). In

addition to the reworked, iron-rich concretions in the conglomeratic strata,

the sandstones contain large, in situ, concretions cemented by ferroan

calcite. At the study site west of Carbon, many of these concretions are

pipe-like in form and are aligned SSE (Fig. 9; v¼ 1578; r¼ 8.28; n¼ 18).

Crossbedded sandstones—the matrix for the pipes—have foresets that dip

in the same direction (Figs. 2, 10).

Reworked, concretionary clasts range in diameter from , 1 cm to . 2

m. Rinds composed of iron-oxide-cemented sandstone are especially

prominent on relatively small, discoidal clasts that comprise grain-

supported, well-sorted conglomerates and form lags at the bases of many

sandstone bodies (Fig. 11A, B). In weathered cross sections, many of these

smaller clasts are hollowed out—their friable interiors have fallen away,

leaving shell-like rinds and internal fractures lined on both sides by iron-

oxide cement (Fig. 11A). Some of the larger reworked clasts are also

rinded, but their rinds are typically incomplete (Fig. 11D). The large clasts

are cut by numerous orthogonal fractures, many of which are lined by iron

oxide. Haloes of angular, iron-rich, blocky fragments surround some of the

large, reworked clasts (Fig. 11D), and similar, small blocky fragments are

also common constituents of conglomerates (Fig. 11C). Large, tabular

fragments of stratified, highly friable, iron-poor sandstone and siltstone are

also present in some poorly sorted conglomerates (Fig. 12). The largest

reworked, iron-rich concretionary clast (1 m 3 1 m 3 2 m) rests upon

conglomerate marking an intraformational Hanna unconformity (Fig. 6;

Secord 1998, 2006), but is surrounded and overlain by bedded, well-sorted

sandstone (Fig. 7). This lag deposit lies just above a thick sandstone with

over-steepened, contorted bedding (Fig. 7B). At a slightly lower

stratigraphic level below the intraformational unconformity, numerous

large concretionary clasts are present in a structureless, sandy matrix (Figs.

6, 8).

Interpretation

Reworked, iron-rich concretions in the Hanna Formation conglomerates

were derived from nearby, in situ, iron-rich concretions in the Ferris

Formation. Iron-oxide-cemented rinds and joint linings present in both in

FIG. 5.—In situ concretions: photomicrographs (A, B, C) and close-up of speckled hand specimen (D). A) Dense iron-oxide-cemented rind, plane light. Note open fabric

with few grain contacts. B) Central portion of iron-rich concretion with meniscate, iron-oxide cement and rounded pores (r), filled with blue epoxy (plane-polarized light).

Arrows point to iron-oxide rhombs, interpreted as pseudomorphs after siderite that were oxidized in the vadose zone. C) ‘‘Speckle’’ of iron oxide cement that encloses

numerous quartz grains (crossed-polarized light). D) Close-up photo of hand specimen of the speckled center of a concretion. Arrows point to rhombic speckles.
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situ and reworked concretions indicate that all are the oxidized remains of

siderite-cemented concretions. The smaller, discoidal clasts with iso-

pachous rinds (Fig. 11A) are similar to the reworked concretions in the

Dakota Formation of eastern Nebraska (Loope et al. 2012) and to similar

masses in Pleistocene alluvium of the Netherlands (van der Burg 1969).

These clasts were reworked and rounded while still siderite-cemented—

their complete (unabraded) rinds formed after transport and deposition

when the internal siderite dissolved and the diffusing ferrous iron was

oxidized at clast perimeters. These clasts were likely derived from in situ

concretions that had encountered neither oxidizing groundwater nor the

vadose zone. Many of the larger clasts, however, show evidence of

oxidation, both above and below the water table, before transport. Unlike

the smaller clasts, rinds on the larger clasts are commonly incomplete,

indicating that they formed in oxidizing groundwater before transport and

were abraded and partially lost during transport. Dispersed, blocky,

centimeter-scale iron-rich clasts (Fig. 11C) represent the scattered remains

of large, oxidized concretions that did not survive transport. Haloes

composed of similar angular, blocky fragments that surround some large

clasts (Fig. 11D) indicate that at least some of the large, already

thoroughly-oxidized clasts did, however, survive transport.

The large sizes of many of the clasts suggest transport along the

relatively steep surfaces of alluvial fans rather than by low-gradient rivers

(see Blair and McPherson 1994). Although it is possible that these clasts

were transported to trunk streams by sediment gravity flows, none of the

preserved (and exposed) strata reflect deposition via these processes. We

interpret the preserved deposits that contain the large clasts as winnowed

lags that formed in river channels.

Soft-sediment deformation is the best explanation for large concretion-

ary clasts ‘‘floating’’ in structureless sandstone (Fig. 8). Large, dense (iron-

rich) clasts in well-stratified lags descended into sand that was liquefied

during seismic events equal to or greater than M5 (Ambraseys and Sarma

1969). These deformation structures are fully consistent with a syntectonic

interpretation (see Aschoff and Schmitt 2008).

We have seen no evidence of reworking of the ferroan-calcite-cemented

concretions (Figs. 1, 9, 10B). Bedding can be traced from concretion

interiors into the surrounding sandstone. These concretions formed in

highly permeable, well-sorted sands. During their growth, pore waters were

reducing, but calcium ions were much more abundant than ferrous iron.

Ferroan calcite remains unoxidized because it contains much less ferrous

iron than siderite; lithautotrophic, iron-oxidizing microbes cannot

metabolize carbonate minerals with less than 50 mole% Fe (see Loope et

al. 2010, p. 1002). Schultz (1941) was the first to note that pipe-like

concretions form parallel to the direction of groundwater flow; subsequent

studies have confirmed this relationship (Mozley and Davis 1996; Cavazza

et al. 2009). The SSE alignment of the pipe-like concretions west of

Carbon is parallel to the dip direction of crossbeds from the same area

(Figs. 2, 8).

We did not investigate the provenance of the friable sandstone clasts in

the Hanna Formation (Fig. 12). We speculate that they may represent

fragments of the sandstone matrix of the Ferris concretions.

SOURCE AREAS, TRANSPORT DIRECTIONS, AND SEDIMENTARY PROCESSES

Description

Paleocurrent directions based on crossbeds in the Hanna and Ferris

formations in the Hanna and Carbon basins were reported by Ryan (1977),

Secord (1996), and Wroblewski (2003, 2006). Secord (1996) took

measurements on trough crossbeds from the principal areas where the

iron concretions are abundant. Resulting paleocurrent vectors (calculated

with ‘‘Rockware’’ software) are shown on Figure 1; rose diagrams and

statistics are given in the supplemental file (Fig. A1, see Supplemental

Material). Our measurements indicate bimodal flow in the Ferris
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Formation, with southwestward and southeastward components at Grayson

Ridge (the only place with reworked conglomerates in the Hanna where

multiple measurements can be made on the underlying Ferris). Vector

analysis indicates that the southwestward component was the strongest

(Fig. A1). In contrast, all vectors calculated for the Hanna Formation

indicate predominant southeasterward flow suggesting a change in

paleocurrent directions from southwestward in the Ferris Formation to

southeastward in the Hanna Formation. Our paleocurrent directions in the

Hanna Formation are in good agreement with previous studies, two studies

(Ryan 1977; Wroblewski 2006) reported stronger southeastward flow in

the Ferris Formation.

For the Hanna Formation in the Hanna basin, Ryan (1977) showed that

pebble sizes and feldspar frequency indicate a northern source of sediment.

On the basis of petrographic evidence, he found no compelling evidence

for movement of sand across the anticline into the Carbon basin. He

concluded that the Simpson Ridge anticline was active during deposition of

the Ferris and Hanna, forming a nearly complete sedimentation barrier

between the two basins. Compared to the Ferris Formation, the Hanna

Formation records a later pulse of coarser sediment with higher

aggradation rates (Ryan 1977).

Interpretations

We agree with Wroblewski (2003): the Ferris and Hanna formations are

syntectonic, and record the ups and downs of the Simpson Ridge anticline.

Here, the rocks comprise growth strata (Suppe et al. 1992); their deposits

are analogous to those that surround the actively rising and laterally

propagating Wheeler Ridge anticline in the southern San Joaquin Valley of

California (Burbank et al. 1996; Keller et al. 1998). The Wyoming strata

were deposited by aggrading, antecedent rivers that flowed across an

actively deforming anticline (Fig. 3). Sections of the lower Hanna

Formation containing reworked concretions (Fig. 6) record an episode

when aggradation across the crest of the structure ceased and erosion by

antecedent rivers dominated.

Ryan’s (1977) and Wroblewski’s (2003) paleocurrent data from Ferris

Formation outcrops in the southeastern part of the Hanna basin (along the

FIG. 7.—Largest observed concretionary clast in a lag deposit marking

intraformational Hanna unconformity, crest of Halfway Hill (41848.88 0N;

106815.700W). A) In view from the east, clast is surrounded and overlain by bedded

sandstone. B) Viewed from south, the clast rests on other reworked clasts (outlined in

white). Sand-filled crack in largest clast (white arrow) and sandstone with

oversteepened and folded bedding (black arrow and black dashed line) are

interpreted as products of earthquake-induced fluidization and liquefaction.

FIG. 8.—Iron-rich clasts in the Hanna Formation. Conglomerate on south-facing

cliff at Halfway Hill. A) Large clasts (arrows) ‘‘float’’ in structureless sandstone

matrix. B) View of same outcrop from a different angle suggests that the matrix-

supported fabric was produced by soft-sediment deformation. Dashed line is

interpreted as a contorted bedding plane.

SYNTECTONIC PALEOCENE CONCRETIONSJ S R 873



western edge of the Simpson Ridge anticline) show transport to the

northeast; those at the nose of the anticline show transport to the east (Fig.

2). Both workers interpreted these data as evidence for diversion of the

Ferris drainage pattern along the strike of the anticline and around its nose.

Both concluded that the Hanna and Carbon basins became two separate

basins during Ferris and Hanna deposition, with only a narrow connection

(for both formations) at the nose of the Simpson Ridge anticline. Some of

Ryan’s data for Hanna Formation crossbeds in the southeastern Hanna

basin and at the western margin of the Carbon basin, however, show an

eastward vector as much as 13 km south of the anticlinal nose; Secord’s

(1996) data also reflect this eastward vector (Fig. 2). These data help to

confirm that, in our study area, both formations were deposited by an

antecedent river system.

Geomorphological studies of active tectonic folding in the San Joaquin

Valley (Keller et al. 1998; Talling and Sowter 1999) show that some

antecedent streams that flowed perpendicular to the rising structures were

able to maintain their positions, producing water gaps; other antecedent

streams were eventually diverted laterally around the structures, leaving

wind gaps. In their study of the Zagros Mountains of southern Iran,

Ramsey et al. (2008) showed that the stream patterns between rising

anticlinal folds provide evidence that the folds there are propagating

laterally and ‘‘pinching’’ streams between fold tips. Burbank et al. (1996)

summarize the many different geologic and geographic factors that

determine whether transverse, antecedent streams can maintain the courses

across rising structures or are, instead, deflected.

We argue here that the large concretionary clasts in the Hanna Formation

were derived from in situ concretions in the Ferris Formation and that these

clasts were carried down the slopes of the rising Simpson Ridge anticline

and, perhaps, over small alluvial fans built into the Carbon basin (Fig. 2).

Our data agree with Ryan’s (1977) and Wroblewski’s (2003) interpretations

(for both the Ferris and Hanna) relating to the anticlinal nose but disagree

with Ryan’s (1977) view that the two basins remained separate. Ryan’s

(1977) data, together with Secord’s (1996) and our data, indicate that, for

the Hanna Formation of the Carbon basin, southeast-flowing, antecedent

rivers crossed the rising anticline in a swath at least 5 km wide and

deposited reworked concretions (Fig. 2) across its axis at least 7 km south

of the anticlinal nose.

Siderite concretions commonly precipitate in reducing groundwater

where microbes metabolize dissolved organic matter and methane. A thin

package of flat-lying strata deposited by antecedent rivers that drain a coal

basin (like the Hanna basin) and flow over the crest of an anticline is

chemically and physically favorable for nucleation and growth of siderite

concretions (Fig. 3). Mozley et al. (1995) and Hall et al. (2004) showed

that calcite concretions in fluvial deposits in the Santa Fe Group

(Oligocene–Pleistocene, central New Mexico) preferentially grew in strata

with the greatest pre-cementation porosity. They attributed this to the

greater flux of calcium and bicarbonate ions through the most permeable

part of the aquifer. We note that, due to the impermeability of the

underlying Medicine Bow Formation and Lewis Shale, groundwater in the

sandy Ferris–Hanna aquifer was forced to accelerate as it moved through

the thinning wedge of growth strata (Fig. 3; Freeze and Cherry 1979, p.

21). In the subsurface, groundwater flow paralleled stream flow—west to

east from the Hanna basin into the Carbon basin (Fig. 3). By increasing the

flux of calcium, ferrous iron, and bicarbonate ions, and of dissolved

organic matter, vertical and lateral convergence of the groundwater flow

system likely played an important role in the growth of the large siderite

concretions in the Ferris Formation, and in the later growth of the large

ferroan calcite concretions in the basal Hanna Formation.

Large concretions in the basal Hanna Formation—eroded from uplifted

Ferris Formation—were likely transported to the trunk stream by slumps

and small alluvial fans; these large clasts are now preserved as lags that are

interbedded with crossbedded sandstone. Due to the generally non-

resistant character of the rising strata, we doubt that large fans developed

on the flanks of the Simpson Ridge anticline. A modern analog, Wheeler

Ridge, stands 300 m above the San Joaquin Basin, but the fans on its north

(distal) flank have built only ~ 1 km into the adjacent basin.

By far the thickest and most numerous conglomeratic beds as well as the

largest reworked concretionary clasts of the basal Hanna Formation in the

Carbon basin lie along the axis of the Halfway Hill syncline. We consider

this an example of preferential preservation: the conglomeratic strata along

the axis of the syncline (Fig. 6) were protected from post-tectonic erosion.

Because we also observed reworked concretions west of Carbon (well

south of the Halfway Hill syncline, Fig. 2), we think the antecedent river

eroded a wide swath across the anticline, not a narrow paleovalley. The

thick, well-sorted, SSE-dipping crossbeds with SSE-oriented pipe-like

concretions in the Hanna Formation cropping out very near the axis of the

Simpson Ridge anticline (west of Carbon; Fig. 2) indicate that the lower

Hanna Formation was deposited by a SSE-flowing, antecedent river. After

an episode of sediment bypass, aggradation started to again outpace the

upward propagation of the growing anticline (Burbank et al 1996), and

FIG. 9.—Pipe-like concretions west of Carbon (Fig. 2). A) Incomplete, lower

portions of two in situ concretions oriented S308E. B) Cross-sectional view of pipe-

like concretions. Rock at ‘‘F’’ is a fallen fragment of the in situ pipe above it.
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spread a broad, continuous sheet of sandy sediment that spanned the Hanna

and Carbon basins.

DISCUSSION

Recognition of reworked concretions helps to constrain the timing of

concretion growth. Confusing a reworked concretion with an in situ

concretion (or ignoring all concretions) results in the loss of important

provenance information. If well exposed, concretions that occur in

conglomeratic strata with grain-supported fabrics are easy to recognize

as reworked clasts (Fig. 9A–C; Table 1). Isolated concretions in a

structureless matrix are more difficult to interpret. The texture and fabric of

clasts in in situ concretions closely resemble those of the hosting clastic

sediment. The texture and fabric of detrital clasts in a reworked concretion,

however, are likely to differ substantially from the texture and fabric of the

hosting matrix (Table 1). Reworked concretionary clasts are much more

likely to be actively involved in soft-sediment deformation (Fig. 8) than are

in situ concretions, but in situ, late diagenetic concretions can passively

grow to enclose soft-deformation structures in well-sorted sandstones (Fig.

10B).

Although they can provide key evidence for syntectonic erosion and

deposition, reworked, iron-rich concretions do not, by themselves,

necessitate uplift or unconformable relationships. Reworked, sideritic

concretions are common in the deposits of post-Silurian meandering fluvial

systems, where migrating channels erode marshy or forested floodplain

deposits. Rinded concretions (the oxidized remains of early-diagenetic,

sideritic mudballs) are common in both the Triassic Shinarump Member of

the Chinle Formation (northern Arizona; Burgess et al. 2016) and the

Dakota Formation (eastern Nebraska; Loope et al. 2012). Reworked, very

young, iron-rich concretions can also be found on marine sand flats and

tidal creek beds (Pye et al. 1990). The stark differences, however, between

the fine-grained sandstones that host in situ concretions of the Ferris

Formation (Fig. 4) and the conglomeratic and large-scale crossbedded

strata that host the reworked concretions in the Hanna Formation indicate

that reworking of the concretions was not an autocyclic process that

operated in a single depositional setting.

The permeability of hosting strata determines the diagenetic fate of

siderite concretions. The large-scale, internal structure of the concretions

described here—the enveloping rinds and fracture linings—are very

similar to those in concretions of the Jurassic Navajo Sandstone (eolian;

southern Utah). Like the concretions described here, those in the Navajo

also contain abundant iron-oxide pseudomorphs after euhedral, rhombic

siderite crystals (Loope et al. 2011; Loope and Kettler 2015). In contrast,

outcrops of the Cretaceous Gammon Shale (Gautier 1982), which are now

exposed to climate and vegetation that are similar to those in our study

area, contain abundant siderite and very little iron oxide (Fig. 13; Gautier

1982). The carbon-rich, low-permeability host rocks apparently prevented

oxygenated water from reaching and penetrating the Gammon concretions.

The lithology and location of the very large, reworked, iron-rich

concretions in the Hanna Formation of our study area—found at Grayson

Ridge and Halfway Hill (Fig. 2)—indicate that, during middle Paleocene

tectonism, many Ferris Formation concretions were fractured and uplifted

into the vadose zone before they were entrained, transported, and deposited.

Because of their size and relative fragility, we consider it unlikely that the

FIG. 10.—Hanna Formation crossbeds, west of

Carbon (see Fig. 2 for location). A) Southeast-

dipping crossbeds near base of the Hanna

Formation (418 50.90760 N; 1068 23.84340 W). B)

Portion of a calcite-cemented concretion that grew

within and enclosed deformed crossbeds.
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concretions exposed near the top of the section at Halfway Hill (Figs. 6, 7)

were transported 13 km from the nose of the Simpson Ridge anticline. The

Ferris–Hanna contact is exposed in only a small portion of the Grayson

Ridge exposure, so there is little direct evidence available to constrain their

precise provenance. We consider it most likely, however, that some of the

large concretions at the base of the 20-m-thick section at Halfway Hill (Fig.

6) were exhumed in the bed of the antecedent river immediately upstream

where the river was cutting through the concretion-bearing portion of the

Ferris Formation. The majority of the concretions (those higher in the

section) were likely delivered to the trunk stream by gullies and small-scale

alluvial fans or (directly) by mass wasting of the paleovalley walls when

downcutting ceased and the valley began to fill.

Although the tectonic (klippe) hypothesis (Lillegraven 2015) cannot be

entirely refuted, it is far less parsimonious than the source–sink

(autochthonous) argument that we advance here in which large, reworked

concretions in the basal Hanna Formation of the Carbon basin are

explained by erosion of in situ concretions in directly subjacent and

proximal Ferris Formation strata. Lillegraven (2015) reported that the

contact between the Hanna Formation and underlying rock units was

tectonic everywhere it could be observed. The Hanna–Ferris contact,

however, is poorly exposed in most of the Carbon basin. Grayson Ridge is

the only place we observed where the contact is fairly well exposed, but we

found no evidence there that the contact is structural. The kinds of

evidence (e.g., faulting, folding, fault gouge) that would be expected along

a contact in which a massive body of rock had been moved . 10 km

appear (to us) to be absent.

The Hanna basin and surrounding Laramide block uplifts in south-

central Wyoming may have played important roles in the routing of a major

middle Paleocene to early Eocene river system that originated in southern

California and Idaho and debouched into the Gulf of Mexico during

FIG. 11.—Reworked concretionary clasts (Hanna Formation). A) Small clasts in a well-sorted, clast-supported conglomerate. Note entire, iron-oxide-cemented rinds on

each clast (Halfway Hill). B) Four conglomeratic lags composed of concretionary clasts; each is underlain by a bed of well-sorted sandstone (SS). Hammer is circled. C)

Small, angular (a) and rounded (r), iron-rich clasts. D) Large, isolated, highly fractured clast with a partial rind; the clast is surrounded by a halo of angular, iron-rich

fragments. The interpretation is that small clasts in the Hanna Formation (Part C) were derived from large concretions that were oxidized and fractured during subaerial

exposure of the Ferris Formation; some of the large clasts in the Hanna (Part D) were carried away from Ferris outcrops by mass wasting or stream floods before their breakup

into smaller clasts.
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deposition of the lower Wilcox Group (Blum and Plecha 2014; Sharman et

al. 2017). The conglomeratic Paleocene fluvial strata in the Carbon basin

described here could have been deposited by rivers originating in

California. Our work suggests a larger (5-km-wide) river system evolved

from the several narrow paleovalleys envisioned by Wroblewski (2006).

Sharman et al. (2017) recognized that the hiatus that developed in the lower

Hanna Formation (Secord 1998, 2006) could very well represent an

episode when sediment, rather than being trapped in a Laramide basin,

bypassed to downstream basins.

CONCLUSIONS

If early diagenetic concretions form in the deposits of streams that cross

rising anticlines, they are likely to be reworked when aggradation is

FIG. 12.—Conglomerate (Hanna Formation) at Grayson Ridge (below intraformational unconformity) composed of iron-rich concretionary clasts (white arrows) and very

friable, imbricated sandstone clasts (black outlines).

TABLE 1.—Characteristics of in situ and reworked concretions.

In Situ Reworked

Relation to host beds

(outcrop)

-Long and intermediate axes oriented parallel to bedding

(including crossbeds)

-Spheroidal if in structureless matrix

-Nucleated along a few preferred bedding planes

-Commonly appear in deformed beds if late diagenetic

-Long and intermediate axes commonly at high angles to bedding; if

platter-shaped, can be imbricated

-Usually accompanied by other coarse clasts in grain-supported lag,

but also occur as isolated clasts in finer-grained matrix (as clasts

in a debris flow, or as result of mixing during soft-sediment

deformation)

Texture and fabric

(microscope)

-Grain size same as host; can show bedding.

-Fabric may be ‘‘exploded’’ due to force of crystallization.

-Grain size differs dramatically from hosting matrix (i.e., mudstone-

based concretion in sandy to conglomeratic host beds

-Orientations of long axes of grains differs from those in host beds
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followed by erosion during fold growth. If reworked concretions are

confused with in situ concretions or if concretions are ignored, important

provenance information is lost. Generally, poor cementation of aggrading

sediment leads to persistence of antecedent streams (Burbank et al. 1996).

Concretion growth can leave the bulk of the host sediment uncemented and

easily erodible, but, with time, could lead to assembly of a resistant,

armored surface that could bring about the defeat and diversion of the

stream.

The coarse, concretionary debris in the basal Hanna Formation in our

study area was derived from in situ concretions in the Ferris Formation

while the Ferris was being actively deformed along the axis of the Simpson

Ridge anticline. The diagenetic and transport history of the iron-rich

concretions reflects the evolving interaction of tectonic, fluvial, and

geochemical processes: 1) As Simpson Ridge rose beneath rapidly

aggrading, permeable sands, the ionic composition and high flux rate of

reducing groundwater allowed large siderite concretions to grow in the

Ferris Formation. 2) When aggradation slowed or the uplift rate increased,

concretions entered shallow, oxidizing groundwater. Microbes built dense

iron-oxide rinds along internal fractures and on the perimeters of most

concretion as siderite dissolved and ferrous iron started to diffuse

throughout the water-saturated concretions. 3) When concretions rose into

the vadose zone, remaining siderite crystals were oxidized in situ. 4)

Eroded concretionary material was transported southeastward and

deposited (into the basal Hanna Formation) by a southeast-flowing river.

5) Downcutting through Ferris Formation strata that contained the largest

concretions was followed by mass wasting of valley or gully walls and fan-

building by short tributaries.

The Hanna Formation eventually buried the nose of Simpson Ridge

anticline, and formed a continuous sheet of sandstone that joined the

Hanna and Carbon basins. Calcite-cemented concretions grew in this sheet;

many pipe-like calcite concretions grew parallel to the NW–SE direction of

groundwater flow The sandstone sheet was gently folded before

deformation ceased, and later erosion has divided it into western and

eastern portions.

Early diagenetic concretions are commonly reworked in sedimentary

systems, and, we argue here that, due to convergent groundwater flow,

concretions—both in situ and as reworked clasts—may be especially likely

to be found in syntectonic growth strata.

Siderite concretions in sandstone–siltstone outcrops are commonly

completely altered to iron oxide, but siderite concretions in tight, carbon-

rich claystones, even when uplifted and exposed to similar climatic

conditions, are completely preserved. The oxidized remains of siderite

concretions are distinctive, visually prominent, and highly informative. In

meandering fluvial systems, early siderite concretions are commonly

reworked by autocyclic processes (Loope et al. 2012; Burgess et al. 2016).

This study demonstrates that reworked, iron-rich concretions can also

reveal the interplay of deposition, early diagenesis, and erosion in

tectonically active areas.

SUPPLEMENTAL MATERIAL

Paleocurrent diagrams are available from JSR’s Data Archive: http://sepm.

org/pages.aspx?pageid¼229.
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